Since the general indexing and intensities match those or $R \overline{3} m\left(D_{3 d}^{5}\right)$ (Fig. 3) fairly well, the distortion from the rhombohedral structure must be small. Since the best values for the rhombohedral unit cell constants indicate only a slight distortion from the cubic KCN III structure, let us start from a model of KCN III sketched in Fig. 4. The space group $R \overline{3} m\left(D_{3 d}^{5}\right)$ with the cyanide ions lying along the rhombohedral axis (Fig. 3 ) is close to the real structure, so we start with the $C$ and the N atoms lying along a three fold [111] axis in the cubic cell. If $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\left(\left|\vec{a}_{1}\right|=3.808 \AA\right)$ are the edges of the . cube we can describe this structure with an orthorhombic cell with

$$
\begin{aligned}
& \vec{A}_{1}=\vec{a}_{1}+\vec{a}_{2} \\
& \vec{A}_{2}=\vec{a}_{1}-\vec{a}_{2} \\
& \vec{A}_{3}=\vec{a}_{3}
\end{aligned}
$$

We now have a C centered orthorhombic structure with two molecules per cell and $\mathrm{CN}^{-}$lying in the (010) plane. We get the $R \overline{3} m\left(D_{3 d}^{5}\right)$ space group by increasing the length of the cube diagonal so that the angle $\alpha$ is smaller than $90^{\circ}\left(\alpha=86^{\circ} 42^{\prime}\right)$. A small change in a is required to agree with the rhombohedral lattice parameter, $a=3.7803 \AA$, given above. The C-centered orthorhombic cell becomes a C centered monoclinic cell whose basis vectors $\grave{A}_{1}, \vec{A}_{2}, \overleftarrow{A}_{3}$, are also given by Eq. (6) if $\vec{a}_{1}, \vec{a}_{2}$, and $\vec{a}_{3}$ in

