Since the general indexing and intensities match those of $R\overline{3}m$ (D_{3d}^5) (Fig. 3) fairly well, the distortion from the rhombohedral structure must be small. Since the best values for the rhombohedral unit cell constants indicate only a slight distortion from the cubic KCN III structure, let us start from a model of KCN III sketched in Fig. 4. The space group $R\overline{3}m(D_{3d}^5)$ with the cyanide ions lying along the rhombohedral axis (Fig. 3) is close to the real structure, so we start with the C and the N atoms lying along a three fold [111] axis in the cubic cell. If \vec{a}_1 , \vec{a}_2 , \vec{a}_3 ($|\vec{a}_1| = 3.808$ Å) are the edges of the cube we can describe this structure with an orthorhombic cell with

$$\vec{A}_{1} = \vec{a}_{1} + \vec{a}_{2}$$

$$\vec{A}_{2} = \vec{a}_{1} - \vec{a}_{2}$$

$$\vec{A}_{3} = \vec{a}_{3}$$
(6)

We now have a C centered orthorhombic structure with two molecules per cell and CN lying in the (010) plane. We get the $R\overline{3}m(D_{3d}^5)$ space group by increasing the length of the cube diagonal so that the angle α is smaller than 90° (α = 86°42'). A small change in a is required to agree with the rhombohedral lattice parameter, a = 3.7803 Å, given above. The C-centered orthorhombic cell becomes a C centered monoclinic cell whose basis vectors \vec{A}_1 , \vec{A}_2 , \vec{A}_3 , are also given by Eq. (6) if \vec{a}_1 , \vec{a}_2 , and \vec{a}_3 in